Practice - 11

Double Integrals in Polar Coordinates
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Multiple integrals

Multiple integrals:

a) Double integrals
1) lterated Integrals
2) Double Integrals over General Regions
3) Double Integrals in Polar Coordinates

b) Triple integrals
1) Triple Integrals in Cylindrical Coordinates
2) Triple Integrals in Spherical Coordinates
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Definite integrals

Before starting on double integrals let's do a quick review of the definition
of definite integrals for functions of single variables.

b
First, when working with the integral, f f(z) dz
i

we think of x's as coming from the interval a<x<b.

For these integrals we can say that we are integrating over the interval
asx<b.
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Definite integrals

Now, when we derived the definition of the definite integral we first
thought of this as an area problem.

We first asked what the area under the curve was and to do this we
broke up the interval a<x<b into n subintervals of width Ax and choose a
point, ¥, from each interval as shown below,

¥
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Definite integrals

Each of the rectangles has height of f (z;) and we could then use
the area of each of these rectangles to approximate the area as follows.

A= f(x}) Az + f(zy) Az +---+ f(x}) Az + -+ f(20) Az

To get the exact area we then took the limit as n goes to infinity and
this was also the definition of the definite integral.

fhf[x) dng;l%zﬂ:f(mz)ﬂm
i i=1
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Double integrals

Now we want to integrate a function of two variables, f(x,y).

With functions of one variable we integrated over an interval

(.e. aone-dimensional space) and so it makes some sense then that
when integrating a function of two variables we will integrate

over aregion of ®* (two-dimensional space).
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Double integrals

We will start out by assuming that the region in p? is a rectangle
which ill denot follows,
ICh we wWill aenote as Tollows R:[{I?b]X[C,d]

This means that the ranges for x and y are a<x<b and c<y<d.

Also, we will initially assume that f(x,y)=0 although this doesn't really have
to be the case.

Let's start out with the graph of the
surface S given by graphing f(x,y)
over the rectangle R.
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Double integrals

Let’s first ask what the volume of the region under S (and above the
Xy-plane of course) is.

We will approximate the volume much as we approximated the area
above.

We will first divide up a<x<b into n subintervals and divide up c<y=<d into
m subintervals. This will divide up R into a series of smaller rectangles
and from each of these we will choose a point (=, ;).

| (x])

Here is a sketch of this set up. %

a=x X x g A =X,
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Double integrals

Now, over each of these smaller rectangles we will construct a box
whose height is given by ¢ (mf yf)
i1y |-

Here is a sketch of that.

Each of the rectangles has a base area

of AA and a height of f (33" y;)

so the volume

of each of these boxes is f (1":‘, y; ) AA

The volume under the surface S is then approximately,

T

v=3" zm:f (m;,y;) AA
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Double integrals

V = Zn:if(:r;,y;) AA

i=1 j=1

We will have a double sum since we will need to add up volumes in both
the x and y directions.

To get a better estimation of the volume we will take n and m larger and
larger and to get the exact volume we will need to take the limit as both

n and m go to infinity.
V= nm—}mzzf("y)ﬂa

i=1 j=1

Here is the official definition of a double integral of a function of two
variables over a rectangular region R as well as the notation that we'll use

forit. n_ _m
Jf r@waa— 1m S35 (eny;) aa
J. =
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Double integrals

Note that the differential is dA instead of the dx and dy that we're used to
seeing.

As indicated above one interpretation of the double integral of f(x,y) over
the rectangle R is the volume under the function f(x,y) (and above the xy-

plane). Or,
Volume = f(z,y) dA
I/
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Double integrals

a) Double integrals

1) lterated Integrals

2) Double Integrals over
General Regions
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Double integrals Iterated Integrals

Theorem 1 (Fubini’s Theorem ):

If f(x,y) is continuous on R = [a, b] x [e,d] then,

[[1evaa=["["sev avae= [* [ @) dzay

These integrals are called iterated integrals.
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Double integrals

1) Area:if z=f(x,y)=1, then the double integrals gives the area of region

D.
Areaof D = ffdﬂ
D

2) Volume: the integral is equal to volume under the surface z=f(x,y) # 1
above the region D.

Volume = /f f(z,y) dA
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Double integrals Iterated Integrals

Ways of computing a double integral over a rectangle.

[[r@waa= [ [Ldf(m,y) dy] da

We will compute the double integral by first computing
d
[ fawa
[

and we compute this by holding x constant and integrating with respect to
y as if this were a single integral.
This will give a function involving only x's which we can in turn integrate.
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Double integrals Iterated Integrals

B (a) f[ 6ry’dA,  R=[2,4x[1,2]
R

It doesn’t matter which variable we integrate with respect to first, we will
get the same answer regardless of the order of integration.
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Double integrals Iterated Integrals

Ex1: Solution 1. 1 2
f f 6zy? dA = f f 6zy’ dydzx
2 J1
R

In this case we will integrate with respect to v first.

1
ff 6xy’ dA = f (Zmya)ﬁ dx
) 2

1

:L(1ﬁm—2m)m =

4 4
/ 14z dx :73:2|2:84
2
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Double integrals Iterated Integrals

_ : 4 p2
Ex1: Solution 2. ff 6$‘y2 dA — f f 6$‘y2 dy da
2 1
R

In this case we'll integrate with respect to x first and then y.

2 e4
f f 6ry’ dA = f f 6xy” dx dy
/s 1 Je
? 2, 2y |4
:ﬁ (3z7y }'2 dy

2
:f 36y° dy
1

= 12¢°;
=84
Sure enough the same answer as the first solution.
So, remember that we can do the integration in any order.
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Double integrals Iterated Integrals

Ex2: (b) fﬂ?m — 4y%)d A, R = [—5,4] x [0, 3]

For this integral we'll integrate with respect to y first.

ff(?a’, — 4y%)dA = f_: /;(3 2x — 4y*)dy dx

B
4
= f (22y — ') de

5

_ f_4(5“’ — 8l)de

= (3% — 81z)[.

= —T56
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Substitutions in Double integrals !!!

Ex3: (e) e dA, R = [—1, 2] X [0, 1] |
]

Now, while we can technically integrate with respect to either variable first
sometimes one way is significantly easier than the other way.
In this case it will be significantly easier to integrate with respect to y first

as we will see. -
ffﬂ:ezydﬂ:f f e dydzx
~1Jo
R

The y integration can be done with the quick substitution,

U= Iy du =z dy

which gives
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Substitutions in Double integrals !!!

Ex3: which gives

2
ffﬁ:&’ydﬂ:f e¥|, dx
= -1

2

— f (e” — Ndx
-1

= (e* — ),
—e’—2— (e ' +1)

—e’_e 13
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Substitutions in Double integrals !!!

Ex3: So, not too bad of an integral there provided you get the substitution.
Now let's see what would happen if we had integrated with respect to x first.

ff re™VdA = f mezy da diy
—1

In order to do this we would have to use "= dv — e dx

integration by parts as follows, du = dx v = % e™

. . Ve 1 2
The integral is then, / [ ze™dA = ﬁ (gezy - /Eezy da;)
R
1 T 1 2
= f (_ezy _ _ezy)
0 \Y¥ Y
1
=f (Ee?y_ ieﬁy) _ (_le V_ ie—y) dy
o \Y Y y Y

We’'re not even going to continue here as these are very difficult, if not
impossible, integrals to do.

dy

-1

dy
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Double integrals Iterated Integrals

Theorem 2: i f (z,y) = g(z) h (y) and we are integrating

over the rectangle R = [a, ] x [c, d] then,

[t aa= [[s@nw aa-

R

_ (ng(a:) dm) ([:dh(y) dy)
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Double integrals Iterated Integrals

Ex4. Evaluate
ffﬂ:c052 (y) dA, R= [—2, 3] X [ﬁ, %]
"

Since the integrand is a function of x times a function of y
we can use the fact.

[t aa= ([ eae) ([ oo ) 0)
_ (%m?) : (% ﬁ "1 4 cos(2y) dy)
-(5) (3 3oe) )

_am

8
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Double integrals Iterated Integrals

Task-1: Evaluate

[[o

0

where Dz{l{x; y)|15x£2;1£y£2}
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Double integrals Iterated Integrals

Task-1: Evaluate ”xy dr dy where  _ ((x y)[1=x=2 12y=2)
5 :
Solution: y
2 L2 y 5
-1 dr=ye—| =2y—-= 3 =
Step-1. !1}’ ¥ 2, Y 5

Step-2: 2 2 .2
¥ 2"y
2y - ldy=| -

:g.@_gz

b | 2
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Double integrals Iterated Integrals

Task-2: Evaluate
[[(4- -5 )aray

n

if the region D is bounded by straight lines:

x=0, x=1 y=0, yzg
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Double integrals Iterated Integrals

Task-2: Evaluate ”( 4- 22— y* ) dx dy

n
if the region D is bounded by straight lines:

Solution:
31
_ dy 4 x - a?x
Step-1. ! !
1 S 1
_ I4 -y a!’x-4x———yx
Step-2: 0
1_ 2
=4———y°
3 ¥

Step'3: i[“—%—yz]dy:[dly—%y—y_z]

x=0, x=1 »=0, y:%
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Double Integrals Over General Regions

In the previous section we looked at double integrals over rectangular
regions.

The problem with this is that most of the regions are not rectangular so
we need to now look at the following double integral,

[[ # ) aa
where D is any region. D
There are two types of regions that we need to look at.
Here is a sketch of both of them.

)’:32(“)

Y=g (%)
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Double Integrals Over General Regions

Case 1 ¥ Case 2

)’:32(“)

Y=g (%) E

x

a )

We will often use set builder notation to describe these regions.
Here is the definition for the region in
Case 1

D={(z,y)la<z<bh g(x) <y<gs(x)}
Case? p—J(z,y) |l (y) <z <hs(y),c<y<d}
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Double Integrals Over General Regions

The double integral for both of these cases are defined in terms of
iterated integrals as follows.

InCase 1where D = {(z,y)|la <z < b, g1 (z) <y < g> (x)}
the integral is defined to be,

[[1@waa= | b ﬁ ::}f(m, y) dydz
D

InCase 2where D = {(2,y) [l (y) <z < hy (), c <y < d}
the integral is defined to be,

[[1@w dazﬁd/hhizzy}ftx,y) de dy
D ' :
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Double Integrals Over General Regions

Here are some properties of the double integral.
Note that all three of these properties are really just extensions of
properties of single integrals that have been extended to double integrals.

Properties:

1 [[1@v @y da— [[ 1@y dar [[o@y) aa

2 ff cf (x,y) dA = c/f_f(s:,y} dA, where cis any constant.
D D

3. If the region D can be split into two separate regions Iy and D then
the integral can be written as

[ f@waa— [[r@w aas [f 1@ aa

o
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Double Integrals Over General Regions

2O fﬁ-ia:y — ya)rﬂl

b D is the region bounded by y = \/E andy = x°.

In this case we need to determine the two inequalities for x and y that we
need to do the integral.
The best way to do this is the graph the two curves.

¥
1.

0%} ¥ =afx
o8l
o4l

0.2 -

0.z 0.4 0.& 0s 1.
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Double Integrals Over General Regions

Ex5:  So, from the sketch
we can see that that two inequalities are,

0<z<l <y</z

We can now do the integral,

fﬁélﬁ:y —y%)da = L ' b/;:g(rdmy — y')dydx

D
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Double Integrals Over General Regions

EXx6:
f f 6> — 40y dA,

D'is the triangle with vertices (0, 3), (1,1), and (5, 3).

We got even less information about the region this time.
Let's start this off by sketching the triangle.

y=-2x+3"
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Double Integrals Over General Regions

EX6: ¢
If we use functions of x,
as shown in the image Al
we will have to break TS of
the region up into two different pieces
since the lower function is different R T
depending upon the value of x.

In this case the region would be givenby D = D, U Dy

where,
Di={(z,y)|0<e <], -224+3<y<3}
1 1
Dg:{[a:,y)\lg'mgfy, §$+§§y£3}

y=3
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Double Integrals Over General Regions

Ex6: 1) A(0;3), B(1;1). 2)B(1;1), C(5;3) 3) A(0;3), B(5;3).

I'xa_ y'yn

Ip-Ty  Yp-UYa

-0 _ y-3
1-0 1-3
T_y-3
12
y=-21+3
y=-2x+3

IT-Zo  Y-Ya -2, Y-Ya
To-Ta Yo~ Ya Tp-ZTo  Yb- Yo
z-1_3y-1
5-1 -1 fg=~g—;
1yl Yp- Yo =0.
4 2
y=051+0.5 y=3
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Double Integrals Over General Regions

Ex6: Solution 1:

ffﬁi" —40ydA = ffﬁa: —40“ydA+/f63: —40ydA
f f 6z’ —40ydyd:r:—|—f f 62’ — 40y dyde
2243

- ﬁ (62 - 20y2)‘_23+3 dr + f1 [ﬁmQy— 20y2)'%=+% dz

1 ]
- / 122% — 180 + 20(3 — 22)* dz + f
0 1

2
—32% + 1522 — 180+ 20 (%;c + %) dz

E

1 AN
3, 01 1
2ty 18004+ — (=24 =

U+(4m+a: t = (5743 |

= (3:::“ — 180z — ?(3-23)3)

%

R
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Double Integrals Over General Regions

Ex6: Solution 2: Note the U is the “union” symbol and just means that D
is the region we get by combing the two regions. If we do this then we'll
need to do two separate integrals, one for each of the regions.To avoid
this we could turn things around and solve the two equations for x to get,

1 3
1 1
Y 2 +2 Y

If we do this we can notice that the same function is always on the right
and the same function is always on the left and so the region is,

1 3
D={($=‘y)| —Rytg=r=2y-1 liiy‘_ii?-}

Writing the region in this form means doing a single integral instead of the
two integrals we’'d have to do otherwise.
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Double Integrals Over General Regions

Ex6: Solution 2:
This solution will be a lot less work since we are only going to do a single
integral.

3 poy-1
ffﬁmz —40ydA = f f 6z — 40y dz dy
1 —lzy+%
D

3
— 3 2y-1
_[ (2z —40$y)j_%y+% dy
3 1 33
_ f 100y — 100y? +2(2y — 1)* — 2(—§y+ 5) dy
1

)

1
93
3
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Double Integrals Over General Regions

Task-3: Evaluate
_”(xz +x+ Eyg)dx dy:

n

where Dz{l[x; yil0=x=l, DEyEf-I.}
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Double Integrals Over General Regions

Task-3: Evaluate ”( 2 +ay+2y7)dx dy
) :

D={(x, y)|0=x=], 05y =tox]

where .
Solution: ¥
1 1-x
-1 dr | [+ o+ 27 d
Step-1. _! xg( xy .Jf’).:v‘ R%{/\
Step-2: Iy : T ™

I |[x2+;ty+2y2)dy=
0

:xz[l—x)+%x[1—x)2+%[l—x)3.

42/19



Double Integrals Over General Regions

1 1
1
.I-;'t:J x+— Ix dx—i— Il x d
Step-3: . 27
1 1
1) J.?.}(]f )dx:_l'(ngf)dx:
o 0
] S P
, 41
2 l_ll-x[l—x)ga‘x:i(lx—xg-#lxajdx:
) 21 A 2
1 1 1
LY DR Y L Y e
PR T R
i 2
3) —J(l—x)zdx:l[——2x+2x —Ef]dx:
] ]
—Ele—lx4l—x21+zx —l
= H =—
& 3 &
Step-4: r,r.1. 7
12 24 & 24
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Double Integrals Over General Regions

Task-4: Evaluate ”' dx dy

il

where D:[(x; y10=x=2; —4+x25y£4—x2]
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Double Integrals Over General Regions

Task-4: Evaluate ”' dx dy
; :

where D:',rfx; Yi|0=x=2, —4+x25y54—x2}

Solution: ks
3 4t /Lx
Step-1: [ax | @ .
| %
0 2 X
Step-2: Z
4—x 7/

[ dy=a-2~(-a+2")=8-2¢"

44"
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Double Integrals Over General Regions

Step-3:
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Double Integrals Over General Regions

Task-5: Evaluate
” xy dxdy
D

if the region D is bounded by the lines: Y=X, Xy

a
I
—
—
I
(]

47/19



Double Integrals Over General Regions

Task-5: Evaluate j- I 2 dxdy

n

if the region D is bounded by the lines:
Solution:

yv=xxy=1y=21

Step-1.
a y=x, AL ¢
xy=1
b ¥=x, B2 2
y=2
’ 1
o xy=1, C@u2z2
y=2
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Double Integrals Over General Regions

Step-2:

] 2 dney = [[ 20 dndy +LI Xy dxdy =
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Double Integrals In Polar Coordinates

However, in every case we've seen to this point the region D could be
easily described in terms of simple functions in Cartesian coordinates.

In this section we want to look at some regions that are much easier to
describe in terms of polar coordinates.

For instance, we might have a region that is a disk, ring, or a portion of a
disk or ring.

In these cases, using Cartesian coordinates could be somewhat
cumbersome.
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Double Integrals In Polar Coordinates

For instance, let's suppose we wanted to do the following integral,

f f(z,y) dA, I is the disk of radius 2

D

To this we would have to determine a set of inequalities for x and y that
describe this region. These would be,

—2<r<2
—Vi-? <y<ya-a?

With these limits the integral would become,

[[revar=[ [ sy ayis
D

Due to the limits on the inner integral this is liable to be an unpleasant
integral to compute.
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Double Integrals In Polar Coordinates

fff(m y) dA DI is the disk of radius 2
D

However, a disk of radius 2 can be defined in polar coordinates by the
following inequaliies, 0 < 8 < 2«
0<r<2

These are very simple limits and, in fact, are constant limits of integration
which almost always makes integrals somewhat easier.

The problem is that we can't just convert the dx and the dy into a dr and a
de.

In computing double integrals to this point we have been using the fact
that dA=dxdy and this really does require Cartesian coordinates to use.
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Double Integrals In Polar Coordinates

Once we've moved into polar coordinates dA # drd® and so we're going
to need to determine just what dA is under polar coordinates.

=8
A general region in terms of polar coordinates.

Here is a sketch of some region
using polar coordinates.

So, our general region will be defined
by inequalities,

a<@<p
hi(0) <r < ho(0)
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Double Integrals In Polar Coordinates

Now, to find dA let’s redo the figure above as follows,

As shown, we'll break up the region
into a mesh of radial lines and arcs.
Now, if we pull one of the pieces e
of the mesh out as shown ar
we have something that is almost,
but not quite a rectangle.
The area of this piece is AA.
The two sides of this piece both have length Ar =7, —r;  where

T, is the radius of the outer arc and 7; is the radius of the inner arc.
Basic geometry then tells us that the length of the inner edge is r: A8
while the length of the out edge is 47 where A8 is the angle between
the two radial lines that form the sides of this piece.

r, A8
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Double Integrals In Polar Coordinates

Now, let’s assume that we've taken the mesh so small that we can
assume 7; = r, =r that and with this assumption we can also assume
that our piece is close enough to a rectangle that we can also then

assume that, AA~rAOAT

Also, if we assume that the mesh is small enough then we can also

assume that, dA ~ AA do =~ AB dr~ Ar

With these assumptions we then get dA ~ rdrdf.

In fact, as the mesh size gets smaller and smaller the formula above
becomes more and more accurate and so we can say that,

dz dy — dA=rdrdd
dA + drdf.
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Double Integrals In Polar Coordinates

Now, if we're going to be converting an integral in Cartesian coordinates
into an integral in polar coordinates we are going to have to make sure
that we've also converted all the x’'s and y’s into polar coordinates as well.
To do this we'll need to remember the following conversion formulas,

T =1rcosf y = rsinf rﬂzmg—i—y?

We are now ready to write down a formula for the double integral in
terms of polar coordinates.

5 [ haf6)

/ff(m;y) dﬂ:f f f(rcosf,rsinf) rdrdd
i} hl[ﬂj

D
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Polar Coordinates (n [I)

YA
y Alx,y)
r
d o
0 x x
r =rcost

X :
Cosq :f-h']"{p :f
1..,".‘1" +y° qu-'_t' +y°
X =rcosg,
v =rsing.
y = rsinf r? =z 49

y
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Jacobian of the polar coordinates

Def: The Jacobian of the polar coordinates transformation

r = rcosb,
is the 2x2 determinant o
ar
9y
or
Here Oz dy
e cos(6), F
oz _ dy
20 = " sin(#), 0

y = rsinf
dx
50 cosd —rsinf
— =7
dy sinf rcosf
a0
= sin(#),
= rcos(),

This explains why there's an r factor in polar
integrals! The area element dA = dx dy is not equal

to dr d@. Instead, dA is equal to rdrdd.
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Double Integrals In Polar Coordinates =Rl Kkl

Ex7: Evaluate the following integral by converting them into polar
coordinates.
D is the portion of the region between the
(a) f f 2xydA, circles of radius 2 and radius 5 centered at
s the origin that lies in the first quadrant.

First let's get D in terms of polar coordinates. The circle of radius 2 is
given by r=2 and the circle of radius 5 is given by r=5.

We want the region between the two circles, so we will have the following
inequality forr: 2 << r <5

Also, since we only want the portion that is in the first guadrant we get the
following range of 6's: 0<8< g
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Double Integrals In Polar Coordinates Y= rsinf
Ext. (a)ff%ydA; 2<r<5 x =rcosf
D D<g< ™ y =rsinf

- 2

Now that we've got these we can do the integral.

ffﬂmydA:fif 2 (r cos 0) (rsin 8) r dr df
s 0 2
foa:ydA:fo 3 sin(20) dr 6
0 2
D

_ f T Litine)| ao

0 4 2
_ f * 509 n(26) db

. 4

600 T B 609
= —Tcos(%') . 1
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Double Integrals In Polar Coordinates Y= rsinf

Ex8: Find the volume of the region that lies inside z = z?> +y* and
below the plane =z = 16.

Note: z= f(z,y) so f(z,y) =16, f(z,y) = 2°+¢*

Let’s start this example off with a quick sketch of the region.
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Double Integrals In Polar Coordinates AWt KT (T2
Ex8: The formula | _ ff f(ay) dA

finds the volume under the function f(x,y) and we’re actually after the
volume that is above a function.
First, notice that v — ] / 1644 Will be the volume under z=16 (of course
D
we'll need to determine D eventually) while v — / [ 2 +y2dA
D

is the volume under z = z* + y* , using the same D.

The volume that we're after is really the difference between these two or,

V:fflﬁdA—ff:v2+y2dA:ff16—(:t:2+y2) dA
D D D
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Double Integrals In Polar Coordinates (IE=REweNd KISkl

Ex8: Now all that we need to do is to determine the region D and then
convert everything over to polar coordinates.

Determining the region D in this case is not too bad.

If we were to look straight down the z-axis onto the region we would see
a circle of radius 4 centered at the origin.

This is because the top of the region, where the elliptic paraboloid
intersects the plane, is the widest part of the region.

We know the z coordinate at the intersection so, setting z=16 in the
equation of the paraboloid gives, 16 = =2 + y2

which is the equation of a circle of radius 4 centered at the origin.

Here are the inequalities for the region and the function we'll be
integrating in terms of polar coordinates.

0<80<2r 0<r<4 2=16—177
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Double Integrals In Polar Coordinates Y= rsinf

Ex8: The volume is then,

V:fflﬁ— (z* +y°) dA

2w
f f (16 —7*) drdb
)
0
2w
:f 64 d8
0

= 1287

0

0<6<2r
0<r<4
T =1rcosé
Yy =rsiné
dA = rdrdf
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Double Integrals In Polar Coordinates "=Rgve il K rsinf

Task-6: Calculate the double integral using polar coordinates:,

[l N s

i TIpAMOKYTHA CHCTEMA KOOPIIHAT TIoAApHA CHCTEMA KOOPAIHAT
Solution:
=0
Step-1: We reduce the *ow o
functions of the e I

integration limits
—ZExEafT, —Ji-F 2y=0

to the canonical form

y=—-|'2—x2 %yz - 2-x° ﬂ*»;r2+y2 =(ﬁ)z.
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TIOMAPHA CHETEMA KOODAHHAT

[T’ 4_4“5’ .

x

Step-2: We turn the integrand into polar coordinates: "

¥ rrosgrrsing _rgsinE;::'_sinE;::'
4yt oozt g rtind @ 2 z

Step-3: D=r2a2, n2wsin

Step-4: L7

2, D v 1 2o, o2 1 27 .

I_ﬁﬁj_mmdy=gjﬂ a’-;::'ID rsm2¢a’r=glﬂ sin e r ; dgp=
2

=%_|jﬂsin2gm’g&'=—%cus2zp(;:=—%(cus4fr—cus2fr)=ﬂ.
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Task-7: Calculate the double integral using polar coordinates:,

Hqﬁ — 2% =y dxdy :
i

if the region D is bounded by the lines; x* +)* =9, ¥=% y= V3x.
Solution:
Step-1. A

\{9_?‘2—}’2 =\!9—[?"C05¢?)2—[rcos¢?)2= /
( o |
= \’9 —r (l:-::-s:4 @+ sin® c;:?) =J9—r* \ /,'3 :
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Double Integrals In Polar Coordinates y = rsiné
Step-2:

Xpyt=9 Y= y=f3x
1) x2+y2:9:}[rcos¢:‘)2+[rsin¢?)2:9:\
= |:|:I::-s2 @+sin’ -:3:?) =9=
=i =0=r=3
. i
2) y=x=>rs1n¢9=rcos¢;?:>tg¢9=1:‘>¢?=z;
3) y= 3x=>rsin¢9:1f§rcos o=

=>tg¢3:?=-\u'"§=}>¢:?=g.
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Step-3:

A

I =”1!9—r2m’nf¢;ﬁ= wajr 9 pidr
n x 0

I -

3 E :
_ 2
=—l[_—£].2(9 d :I =
2l37 4 3
1]
L I Ty
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Homework

PsbyLuko,
YacTb 3.

Camocroatensiana pabora

1. Buuncants || (12 — x — y)dxdy, ecan oGnaacts D) orpa-
o
HHYeHa OKpysHocThio x° + ' = 0. (Orager: 108x.)
137

-2 BI}E‘IHE.‘J'!HTHE (6 — 2x — 3y)dxdy, ecau obaacts D orpa-
i}

HHYeHD OKPYKHOCTLIO ¥° + y° = 4. (Oraer: 24n.)

3. Buuncaurs ([(4 — x — y)dxdy, ecau obaacts D orpa-
o

HHYEHA OKPYXHOCTBIO x° + ¢° = 2. (Orser: 3m.)
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